Premium
Correlation between Microstructure and Mechanical Properties of High C‐Cr Cast Steel
Author(s) -
Ibrahim Khaled M.,
Mohammed A. Abbas
Publication year - 2003
Publication title -
steel research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.603
H-Index - 49
eISSN - 1869-344X
pISSN - 1611-3683
DOI - 10.1002/srin.200300245
Subject(s) - austenite , materials science , metallurgy , carbide , microstructure , eutectic system , tempering , abrasion (mechanical) , abrasive , martensite , cast iron , hardfacing , composite material
The effect of carbide morphology and matrix structure on abrasion resistance of cast alloyed steel with 2.57% C, 16.2% Cr and 0.78% Mo was studied in the as‐cast and heat treated conditions. Samples were austenitized at three different temperatures of 980, 1050 and 1250 °C for 15 minutes and followed by tempering at 540 °C for 3 hours. The austenitizing temperature of 980 °C revealed fully martensitic structure with little amount of retained austenite, while at 1050 °C the matrix was austenitic with massive amount of coarse secondary carbides. The austenitic matrix with very fine secondary carbides was developed at 1250 °C. The maximum abrasion resistance was obtained at 1050 °C due to the highest structure hardness and existence of both eutectic and secondary carbides in larger size than the formed groove by the abrasive particles during the wear test. On the other hand, the as‐cast pearlitic structure showed high wear rate by an applied load of up to 0.2 bar, followed by very rapid increase in wear rate with higher applied loads. It could be considered that the austenitizing temperature of 1050 °C showed better combination of abrasion resistance and toughness in comparison with other heat treatment cycles.