Premium
Upgrading the microstructure and the mechanical properties of cast high speed steel
Author(s) -
ElGhazaly Saied,
EIGammal Tarek,
EISabbagh Ahmed,
Nofal Adel,
Abbas Mohammed
Publication year - 2001
Publication title -
steel research
Language(s) - English
Resource type - Journals
eISSN - 1869-344X
pISSN - 0177-4832
DOI - 10.1002/srin.200100083
Subject(s) - materials science , carbide , metallurgy , austenite , eutectic system , microstructure , brittleness , toughness , martensite , high speed steel , hardening (computing) , casting , composite material , layer (electronics)
The main problem of near‐net‐shape cast high speed steel toolings is the bad toughness due to the presence of relatively coarse structure and eutectic brittle carbide network. To overcome this problem intensive secondary cooling in oil immediately after casting was achieved, however special standard tool steels with high amount of austenite stabilizing elements were selected to give austenite + carbide in as‐cast condition. This eliminates the risk of martensitic transformation during intensive secondary cooling. Prespherodisation heat treatment at different temperatures was applied to improve the carbide morphology in cast structures of these steels. This is because traditional hardening of high speed (TS‐1 and TS‐2) cast steels showed severe deterioration in carbide morphology and increased noncoherency with the matrix. In this case, skeleton brittle carbide morphologies were detected in such steels. Impact toughness of prespherodised hardened high speed cast steel (TS‐2) was more or less higher than that of the normally heat treated steel, especially at section sizes lower than 20 mm. Meanwhile the prespherodised steel showed lower toughness at section sizes of more than 20 mm. The hot hardness for the same thickness and test temperature of normally hardened high speed steels was higher to some extent than that for prespherodised and hardened ones. However, the hot hardness increases as the size of sample increases, due to the gross of eutectic and secondary carbide.