Premium
Evolutionary test data generation: a comparison of fitness functions
Author(s) -
Watkins Alison,
Hufnagel Ellen M.
Publication year - 2006
Publication title -
software: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.437
H-Index - 70
eISSN - 1097-024X
pISSN - 0038-0644
DOI - 10.1002/spe.684
Subject(s) - computer science , fitness function , path (computing) , artificial intelligence , machine learning , mathematical optimization , algorithm , genetic algorithm , mathematics , programming language
Previous research using genetic algorithms to automate the generation of data for path testing has utilized several different fitness functions, assessing their usefulness by comparing them to random generation. This paper describes two sets of experiments that assess the performance of several fitness functions, relative to one another and to random generation. The results demonstrate that some fitness functions provide better results than others, generating fewer test cases to exercise a given program path. In these studies, the branch predicate and inverse path probability approaches were the best performers, suggesting that a two‐step process combining these two methods may be the most efficient and effective approach to path testing. Copyright © 2005 John Wiley & Sons, Ltd.