z-logo
Premium
64‐bit versus 32‐bit Virtual Machines for Java
Author(s) -
Venstermans Kris,
Eeckhout Lieven,
De Bosschere Koen
Publication year - 2006
Publication title -
software: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.437
H-Index - 70
eISSN - 1097-024X
pISSN - 0038-0644
DOI - 10.1002/spe.679
Subject(s) - computer science , powerpc , operating system , java , bytecode , java bytecode , strictfp , java applet , computer hardware , java annotation , software
The Java language is popular because of its platform independence, making it useful in a lot of technologies ranging from embedded devices to high‐performance systems. The platform‐independent property of Java, which is visible at the Java bytecode level, is only made possible thanks to the availability of a Virtual Machine (VM), which needs to be designed specifically for each underlying hardware platform. More specifically, the same Java bytecode should run properly on a 32‐bit or a 64‐bit VM. In this paper, we compare the behavioral characteristics of 32‐bit and 64‐bit VMs using a large set of Java benchmarks. This is done using the Jikes Research VM as well as the IBM JDK 1.4.0 production VM on a PowerPC‐based IBM machine. By running the PowerPC machine in both 32‐bit and 64‐bit mode we are able to compare 32‐bit and 64‐bit VMs. We conclude that the space an object takes in the heap in 64‐bit mode is 39.3% larger on average than in 32‐bit mode. We identify three reasons for this: (i) the larger pointer size, (ii) the increased header and (iii) the increased alignment. The minimally required heap size is 51.1% larger on average in 64‐bit than in 32‐bit mode. From our experimental setup using hardware performance monitors, we observe that 64‐bit computing typically results in a significantly larger number of data cache misses at all levels of the memory hierarchy. In addition, we observe that when a sufficiently large heap is available, the IBM JDK 1.4.0 VM is 1.7% slower on average in 64‐bit mode than in 32‐bit mode. Copyright © 2005 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here