z-logo
Premium
Tuning a parallel database algorithm on a shared‐memory multiprocessor
Author(s) -
Graefe Goetz,
Thakkar Shreekant S.
Publication year - 1992
Publication title -
software: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.437
H-Index - 70
eISSN - 1097-024X
pISSN - 0038-0644
DOI - 10.1002/spe.4380220702
Subject(s) - computer science , parallel computing , speedup , shared memory , sorting , parallel database , parallel processing , view , database , algorithm , database design
Database query processing can benefit significantly from parallelism. Parallel database algorithms combine substantial CPU and I/O activity, memory requirements, and massive data exchange between processes, all of which must be considered to obtain optimal performance. Since parallel external sorting is a very typical example, we have focused on sorting to tune Volcano, a new query processing system. The purpose of the Volcano project is to provide efficient, extensible tools for query and request processing in novel application domains, particularly in object‐oriented and scientific database systems, and for experimental database performance research. It includes all query processing algorithms conventionally used in relational database systems as well as several new ones, and can execute all of them in parallel. In this article, we present Volcano's parallel external sorting algorithm and a sequence of enhancements to improve its performance. We obtained very good absolute performance, 84 seconds for 100 MB of data, as well as near‐linear speedup with sixteen CPUs and disks. Furthermore, these results were achieved on a shared‐memory machine despite the common belief that parallel query processing is best implemented on distributed‐memory systems. We detail our tuning measures and report on their effectiveness.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here