Premium
A task‐based and resource‐aware approach to dynamically generate optimal software architecture for intelligent service robots
Author(s) -
Park YuSik,
Koo HyungMin,
Ko InYoung
Publication year - 2012
Publication title -
software: practice and experience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.437
H-Index - 70
eISSN - 1097-024X
pISSN - 0038-0644
DOI - 10.1002/spe.1074
Subject(s) - computer science , distributed computing , service (business) , robot , task (project management) , fusion mechanism , resource (disambiguation) , human–computer interaction , software engineering , artificial intelligence , systems engineering , computer network , engineering , virus , economy , virology , lipid bilayer fusion , economics , biology
SUMMARY Intelligent service robots provide various services to users by understanding the context and goals of a user task. In order to provide more reliable services, intelligent service robots need to consider various factors, such as their surrounding environments, users' changing needs, and constrained resources. To handle these factors, most of the intelligent service robots are controlled by a task‐based control system, which generates a task plan that represents a sequence of actions, and executes those actions by invoking the corresponding functions. However, the traditional task‐based control systems lack the consideration of resource factors even though intelligent service robots have limited resources (limited computational power, memory space, and network bandwidth). Moreover, system‐specific concerns such as the relationships among functional modules are not considered during the task generation phase. Without considering both the resource conditions and interdependencies among software modules as a whole, it will be difficult to efficiently manage the functionalities that are essential to provide core services to users. In this paper, we propose a mechanism for intelligent service robots to efficiently use their resources on‐demand by separating system‐specific information from task generation. We have defined a sub‐architecture that corresponds to each action of a task plan, and provides a way of using the limited resources by minimizing redundant software components and maintaining essential components for the current action. To support the optimization of resource consumption, we have developed a two‐phase optimization process, which is composed of the topological and temporal optimization steps. We have conducted an experiment with these mechanisms for an infotainment robot, and simulated the optimization process. Results show that our approach contributed to increase the utilization rate by 20% of the robot resources. Copyright © 2011 John Wiley & Sons, Ltd.