Premium
Hierarchical TiO 2 Photoanodes with Spatial Charge Separation for Efficient Oxygen Evolution Reaction
Author(s) -
Dong Guojun,
Cheng Xiang,
Bi Yingpu
Publication year - 2021
Publication title -
solar rrl
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.544
H-Index - 37
ISSN - 2367-198X
DOI - 10.1002/solr.202000449
Subject(s) - photocurrent , oxygen evolution , water splitting , nanorod , materials science , tin dioxide , substrate (aquarium) , tin oxide , nanotechnology , chemical engineering , electron transfer , oxygen , doping , photocatalysis , optoelectronics , catalysis , photochemistry , electrode , chemistry , electrochemistry , biochemistry , oceanography , geology , engineering , metallurgy , organic chemistry
Charge separation and transfer are crucial to determine photoelectrochemical (PEC) water splitting performance. Herein, a hierarchical bottom‐up approach for fabricating TiO 2 nanorod arrays with an Au nanolayer and Sn 3 O 4 cocatalysts is demonstrated. The hierarchical Sn 3 O 4 /TiO 2 /Au photoanode exhibits a significantly enhanced photocurrent density of 2.5 mA cm −2 at 1.23 V RHE under AM 1.5G irradiation, which is about 5 times higher than that of pristine TiO 2 (0.5 mA cm −2 at 1.23 V RHE ). The significantly enhanced PEC properties are attributed to the spatial charge separation among Au nanolayer and Sn 3 O 4 cocatalysts. More specifically, the bottom Au nanolayer can accelerate the electron transfer from TiO 2 to fluorine doped tin dioxide (FTO) substrate, and the surface Sn 3 O 4 nanoflakes can effectively capture holes and provide abundant active sites for oxygen‐evolution reaction. These demonstrations may offer a new insight for rational design and construction of highly efficient TiO 2 ‐based PEC devices for solar water splitting.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom