Premium
Recent Progress on Exploring Stable Metal–Organic Frameworks for Photocatalytic Solar Fuel Production
Author(s) -
Wang XuSheng,
Li Lan,
Li Dan,
Ye Jinhua
Publication year - 2020
Publication title -
solar rrl
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.544
H-Index - 37
ISSN - 2367-198X
DOI - 10.1002/solr.201900547
Subject(s) - photocatalysis , solar fuel , solar energy , metal organic framework , materials science , nanotechnology , process engineering , environmental science , catalysis , engineering , chemistry , adsorption , biochemistry , organic chemistry , electrical engineering
Solar energy, a clean and sustainable energy source, can be harvested and converted to solar fuel to meet the ever‐increasing energy demand. Integrating the photosensitizers and active catalytic sites into a single solid, metal–organic framework (MOF) with high void architectures and tunable chemical structures, is proposed as a promising platform for photocatalysis. However, compared with the traditional inorganic photocatalysts, the photocatalytic applications of MOFs are greatly hindered by its instability, especially the chemical instability. In this review, the background related to solar fuel production and MOFs are first discussed. Then, several strategies for designing stable MOFs are presented. Third, newly developed approaches for synthesizing highly efficient solar fuel production MOFs are summarized. Finally, the challenges and future perspectives using MOFs for solar fuel production are discussed. This review is expected to provide a deeper understanding of highly stable MOF design and new insights for the application of stable MOFs for solar fuel production.