z-logo
Premium
Can N, S Cocoordination Promote Single Atom Catalyst Performance in CO 2 RR? Fe‐N 2 S 2 Porphyrin versus Fe‐N 4 Porphyrin
Author(s) -
Cao Shoufu,
Wei Shuxian,
Wei Xiaofei,
Zhou Sainan,
Chen Hongyu,
Hu Yuying,
Wang Zhaojie,
Liu Siyuan,
Guo Wenyue,
Lu Xiaoqing
Publication year - 2021
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.202100949
Subject(s) - porphyrin , catalysis , protonation , atom (system on chip) , chemistry , crystallography , photochemistry , materials science , organic chemistry , ion , computer science , embedded system
Single atom catalysts (SACs) are promising electrocatalysts for CO 2 reduction reaction (CO 2 RR), in which the coordination environment plays a crucial role in intrinsic catalytic activity. Taking the regular Fe porphyrin (Fe‐N 4 porphyrin) as a probe, the study reveals that the introduction of opposable S atoms into N coordination (Fe‐N 2 S 2 porphyrin) allows for an appropriate electronic structural optimization on active sites. Owing to the additional orbitals around the Fermi level and the abundant Fed z 2orbital occupation after S substitution, N, S cocoordination can effectively tune SACs and thus facilitating protonation of intermediates during CO 2 RR. CO 2 RR mechanisms lead to possible C1 products via two‐, six‐, and eight‐electron pathways are systematically elucidated on Fe‐N 4 porphyrin and Fe‐N 2 S 2 porphyrin. Fe‐N 4 porphyrin yields the most favorable product of HCOOH with a limiting potential of −0.70 V. Fe‐N 2 S 2 porphyrin exhibits low limiting potentials of −0.38 and −0.40 V for HCOOH and CH 3 OH, respectively, surpassing those of most Cu‐based catalysts and SACs. Hence, the N, S cocoordination might provide better catalytic environment than regular N coordination for SACs in CO 2 RR. This work demonstrates Fe‐N 2 S 2 porphyrin as a high‐performance CO 2 RR catalyst, and highlights N, S cocoordination regulation as an effective approach to fine tune high atomically dispersed electrocatalysts.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here