Premium
Solid‐State Batteries: Overcoming the Interfacial Limitations Imposed by the Solid–Solid Interface in Solid‐State Batteries Using Ionic Liquid‐Based Interlayers (Small 14/2020)
Author(s) -
Pervez Syed Atif,
Kim Guktae,
Vinayan Bhaghavathi P.,
Cambaz Musa A.,
Kuenzel Matthias,
Hekmatfar Maral,
Fichtner Maximilian,
Passerini Stefano
Publication year - 2020
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.202070078
Subject(s) - materials science , electrolyte , ionic liquid , solid state , lithium (medication) , electrochemistry , fast ion conductor , battery (electricity) , electrode , dendrite (mathematics) , ionic bonding , chemical engineering , nanotechnology , ion , catalysis , chemistry , thermodynamics , organic chemistry , engineering , medicine , power (physics) , physics , geometry , mathematics , endocrinology
In article number 2000279, Maximilian Fichtner, Stefano Passerini, and co‐workers demonstrate improved interfacial properties of a lithium lanthanium zirconate (LLZO) solid‐electrolyte (SE)‐based solid‐state battery by employing ionic liquid interlayers at the electrode/electrolyte junctions. This strategy lowers the interfacial resistances and suppresses Li dendrite formation, thus enabling high Li reversibility with the SE. As a result, cells stacked in bipolar configuration deliver excellent electrochemical performance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom