z-logo
Premium
An Activatable Nano‐Prodrug for Treating Tyrosine‐Kinase‐Inhibitor‐Resistant Non‐Small Cell Lung Cancer and for Optoacoustic and Fluorescent Imaging
Author(s) -
Xie Xin,
Zhan Chenyue,
Wang Jie,
Zeng Fang,
Wu Shuizhu
Publication year - 2020
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.202003451
Subject(s) - gefitinib , protein kinase b , cancer research , epidermal growth factor receptor , tyrosine kinase , tyrosine kinase inhibitor , celastrol , chemistry , signal transduction , medicine , cancer , apoptosis , biochemistry , receptor
Abstract Non‐small cell lung cancer (NSCLC) is the most common type of lung cancer and the cause of high rate of mortality. The epidermal growth factor receptor (EGFR)‐targeted tyrosine kinase inhibitors are used to treat NSCLC, yet their curative effects are usually compromised by drug resistance. This study demonstrates a nanodrug for treating tyrosine‐kinase‐inhibitor‐resistant NSCLC through inhibiting upstream and downstream EGFR signaling pathways. The main molecule of the nanodrug is synthesized by linking a tyrosine kinase inhibitor gefitinib and a near‐infrared dye (NIR) on each side of a disulfide via carbonate bonds, and the nanodrug is then obtained through nanoparticle formation of the main molecule in aqueous medium and concomitant encapsulation of a serine threonine protein kinase (Akt) inhibitor celastrol. Upon administration, the nanodrug accumulates at the tumor region of NSCLC‐bearing mice and releases the drugs for tumor inhibition, and the dye for fluorescence and optoacoustic imaging. Through suppressing the phosphorylation of upstream EGFR and downstream Akt in the EGFR pathway by gefitinib and celastrol, respectively, the nanodrug exhibits high inhibition efficacy against orthotopic NSCLC in mouse models.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here