z-logo
Premium
Real‐Time Monitoring of Colloidal Crystallization in Electrostatically‐Levitated Drops
Author(s) -
Hwang Hyerim,
Cho Yong Chan,
Lee Sooheyong,
Choi Tae Min,
Kim ShinHyun,
Lee Geun Woo
Publication year - 2020
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201907478
Subject(s) - crystallization , materials science , colloid , nanotechnology , colloidal particle , chemical engineering , engineering
Colloidal crystallization is analogous to the crystallization in bulk atomic systems in various aspects, which has been explored as a model system. However, a real‐time probing of the phenomenon still remains challenging. Here, a levitation system for a study of colloidal crystallization is demonstrated. Colloidal particles in a levitated droplet are gradually concentrated by isotropic evaporation of water from the surface of the droplet, resulting in crystallization. The structural change of the colloidal array during crystallization is investigated by simultaneously measuring the volume and reflectance spectra of the droplet. The crystal nucleates from the surface of the droplet at which the volume fraction exceeds the threshold and then the growth proceeds. The crystal growth behavior depends on the initial concentrations of colloidal particles and salts which determine the overall direction of crystal growth and interparticle spacing, respectively. The results show that a levitating bulk droplet has a great potential as a tool for in situ investigation of colloidal crystallization.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here