Premium
Tunable and Ultraefficient Microwave Absorption Properties of Trace N‐Doped Two‐Dimensional Carbon‐Based Nanocomposites Loaded with Multi‐Rare Earth Oxides
Author(s) -
Gao Shan,
Wang GuangSheng,
Guo Lin,
Yu ShuHong
Publication year - 2020
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201906668
Subject(s) - materials science , nanocomposite , reflection loss , raman spectroscopy , doping , absorption band , fourier transform infrared spectroscopy , graphene , x ray photoelectron spectroscopy , cerium , analytical chemistry (journal) , optoelectronics , chemical engineering , optics , nanotechnology , composite number , composite material , chemistry , organic chemistry , physics , engineering , metallurgy
A high efficiency and great tunability of bandwidth and absorption‐range electromagnetic wave absorber is proposed without precedent. A series of 2D carbon‐based nanocomposites with the loading of cerium oxide (CN‐Ce) and other types of rare earth oxides (CN‐REOs) can be successfully synthesized by a simple solvothermal‐sintering method. As‐synthesized 2D nanocomposites with local graphite‐like C 3 N 4 structure and trace N‐doped are identified by transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. The CN‐REOs and polyvinylidene fluoride composite absorbers with reflection loss values above −40 dB are obtained in C‐band, X‐band, and Ku‐band, respectively. The empirical rules on effective bandwidth and frequency range are discovered and summarized, which can be successfully realized by simply tuning the doping amount or type of REO. The mechanism is explained by enhanced attenuation and tunable impedance matching. In addition co‐filled samples by two types of CN‐REOs nanocomposites are prepared to support these findings and inspire the preparation of absorber with desirable frequency band in the range of 2–18 GHz.