z-logo
Premium
Switchable Adhesion of Micropillar Adhesive on Rough Surfaces
Author(s) -
Tan Di,
Wang Xin,
Liu Quan,
Shi Kui,
Yang Baisong,
Liu Sheng,
Wu ZhongShuai,
Xue Longjian
Publication year - 2019
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201904248
Subject(s) - materials science , adhesion , adhesive , composite material , surface finish , nanotechnology , surface roughness , polymer , layer (electronics)
Switchable structured adhesion on rough surfaces is highly desired for a wide range of applications. Combing the advantages of gecko seta and creeper root, a switchable fibrillar adhesive composed of polyurethane (PU) as the backing layer and graphene/shape memory polymer (GSMP) as the pillar array is developed. The photothermal effect of graphene (under UV irradiation) changes GSMP micropillars into the viscoelastic state, allowing easy and intimate contact on surfaces with a wide range of roughness. By controlling the phase state of GSMP via UV irradiation during detachment, the GSMP micropillar array can be switched between the robust‐adhesion state (UV off) and low‐adhesion state (UV on). The state of GSMP micropillars determines the adhesion force capacity and the stress distribution at the detaching interface, and therefore the adhesion performance. The PU‐GSMP adhesive achieves large adhesion strength (278 kPa), high switching ratio (29), and fast switching (10 s) at the same time. The results suggest a design principle for bioinspired structured adhesives, especially for reversible adhesion on surfaces with a wide range of roughness.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here