z-logo
Premium
TiO 2 @Perylene Diimide Full‐Spectrum Photocatalysts via Semi‐Core–Shell Structure
Author(s) -
Wei Weiqin,
Zhu Yongfa
Publication year - 2019
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201903933
Subject(s) - diimide , stacking , perylene , photocatalysis , materials science , visible spectrum , ultraviolet , photochemistry , shell (structure) , nanoparticle , nanotechnology , chemical engineering , catalysis , optoelectronics , chemical physics , chemistry , molecule , composite material , organic chemistry , engineering
A semi‐core–shell structure of perylene diimide (PDI) self‐assembly coated with TiO 2 nanoparticles is constructed, in which nanoscale porous TiO 2 shell is formed and PDI self‐assembly presented 1D structure. A full‐spectrum photocatalyst is obtained using this structure to resolve a conundrum—TiO 2 does not exhibit visible‐light photocatalytic activity while PDI does not exhibit ultraviolet photocatalytic activity. Furthermore, the synergistic interaction between TiO 2 and PDI enables the catalyst to improve its ultraviolet, visible‐light, and full‐spectrum performance. The interaction between TiO 2 and PDI leads to formation of some new stacking states along the Π–Π stacking direction and, as a consequence, electron transfer from PDI to TiO 2 suppresses the recombination of e − /h + and thus improves photocatalytic performance. But the stronger interaction in the interface between TiO 2 and PDI is not in favor of photocatalytic performance, which leads to rapid charge recombination due to more disordered stacking states. The study provides a theoretical direction for the study of core–shell structures with soft materials as a core, and an idea for efficient utilization of solar energy.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom