Premium
Understanding Interlayer Contact Conductance in Twisted Bilayer Graphene
Author(s) -
Yu Zhiwei,
Song Aisheng,
Sun Luzhao,
Li Yanglizhi,
Gao Lei,
Peng Hailin,
Ma Tianbao,
Liu Zhongfan,
Luo Jianbin
Publication year - 2020
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201902844
Subject(s) - bilayer graphene , conductance , materials science , bilayer , condensed matter physics , graphene , stacking , nanotechnology , scanning tunneling microscope , density functional theory , chemical physics , membrane , computational chemistry , chemistry , physics , organic chemistry , biochemistry
Bilayer or few‐layer 2D materials showing novel electrical properties in electronic device applications have aroused increasing interest in recent years. Obtaining a comprehensive understanding of interlayer contact conductance still remains a challenge, but is significant for improving the performance of bilayer or few‐layer 2D electronic devices. Here, conductive atomic force microscope (C‐AFM) experiments are reported to explore the interlayer contact conductance between bilayer graphene (BLG) with various twisted stacking structures fabricated by the chemical vapor deposition (CVD) method. The current maps show that the interlayer contact conductance between BLG strongly depends on the twist angle. The interlayer contact conductance of 0° AB‐stacking bilayer graphene (AB‐BLG) is ≈4 times as large as that of 30° twisted bilayer graphene (t‐BLG), which indicates that the twist angle–dependent interlayer contact conductance originates from the coupling–decoupling transitions. Moreover, the moiré superlattice‐level current images of t‐BLG show modulations of local interlayer contact conductance. Density functional theory calculations together with a theoretical model reproduce the C‐AFM current map and show that the modulation is mainly attributed to the overall contribution of local interfacial carrier density and tunneling barrier.