Premium
Self‐Assembly Toolbox of Tailored Supramolecular Architectures Based on an Amphiphilic Protein Library
Author(s) -
Schreiber Andreas,
Stühn Lara G.,
Huber Matthias C.,
Geissinger Süreyya E.,
Rao Ashit,
Schiller Stefan M.
Publication year - 2019
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201900163
Subject(s) - supramolecular chemistry , amphiphile , nanotechnology , self assembly , materials science , supramolecular assembly , drug delivery , chemistry , molecule , polymer , copolymer , organic chemistry , composite material
The molecular structuring of complex architectures and the enclosure of space are essential requirements for technical and living systems. Self‐assembly of supramolecular structures with desired shape, size, and stability remains challenging since it requires precise regulation of physicochemical and conformational properties of the components. Here a general platform for controlled self‐assembly of tailored amphiphilic elastin‐like proteins into desired supramolecular protein assemblies ranging from spherical coacervates over molecularly defined twisted fibers to stable unilamellar vesicles is introduced. The described assembly protocols efficiently yield protein membrane–based compartments (PMBC) with adjustable size, stability, and net surface charge. PMBCs demonstrate membrane fusion and phase separation behavior and are able to encapsulate structurally and chemically diverse cargo molecules ranging from small molecules to naturally folded proteins. The ability to engineer tailored supramolecular architectures with defined fusion behavior, tunable properties, and encapsulated cargo paves the road for novel drug delivery systems, the design of artificial cells, and confined catalytic nanofactories.