Premium
Bioinspired Multivalent Peptide Nanotubes for Sialic Acid Targeting and Imaging‐Guided Treatment of Metastatic Melanoma
Author(s) -
Lei Li,
Xu Zhiai,
Hu Xianli,
Lai Yi,
Xu Jie,
Hou Bo,
Wang Ya,
Yu Haijun,
Tian Yang,
Zhang Wen
Publication year - 2019
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201900157
Subject(s) - sialic acid , peptide , nanotechnology , materials science , metastatic melanoma , melanoma , nanomedicine , cancer research , biophysics , chemistry , medicine , nanoparticle , biochemistry , biology
Tumor metastasis is considered a major cause of cancer‐related human mortalities. However, it still remains a formidable challenge in clinics. Herein, a bioinspired multivalent nanoplatform for the highly effective treatment of the metastatic melanoma is reported. The versatile nanoplatform is designed by integrating indocyanine green and a chemotherapeutic drug (7‐ethyl‐10‐hydroxycamptothecin) into phenylboronic acid (PBA)‐functionalized peptide nanotubes (termed as I/S‐PPNTs). I/S‐PPNTs precisely target tumor cells through multivalent interaction between PBA and overexpressed sialic acid on the tumor surface in order to achieve imaging‐guided combination therapy. It is demonstrated that I/S‐PPNTs are efficiently internalized by the B16‐F10 melanoma cells in vitro in a PBA grafting density–dependent manner. It is further shown that I/S‐PPNTs specifically accumulate and deeply penetrate into both the subcutaneous and lung metastatic B16‐F10 melanoma tumors. More importantly, I/S‐PPNT‐mediated combination chemo‐ and photodynamic therapy efficiently eradicates tumor and suppresses the lung metastasis of B16‐F10 melanoma in an immunocompetent C57BL/6 mouse model. The results highlight the promising potential of the multivalent peptide nanotubes for active tumor targeting and imaging‐guided cancer therapy.