z-logo
Premium
Glucose‐Induced Synthesis of 1T‐MoS 2 /C Hybrid for High‐Rate Lithium‐Ion Batteries
Author(s) -
Bai Jin,
Zhao Bangchuan,
Zhou Jiafeng,
Si Jianguo,
Fang Zhitang,
Li Kunzhen,
Ma Hongyang,
Dai Jianming,
Zhu Xuebin,
Sun Yuping
Publication year - 2019
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201805420
Subject(s) - materials science , electrochemistry , lithium (medication) , anode , ion , chemical engineering , electrode , diffusion , conductivity , phase (matter) , hydrothermal circulation , nanotechnology , chemistry , organic chemistry , medicine , physics , engineering , thermodynamics , endocrinology
1T phase MoS 2 possesses higher conductivity than the 2H phase, which is a key parameter of electrochemical performance for lithium ion batteries (LIBs). Herein, a 1T‐MoS 2 /C hybrid is successfully synthesized through facile hydrothermal method with a proper glucose additive. The synthesized hybrid material is composed of smaller and fewer‐layer 1T‐MoS 2 nanosheets covered by thin carbon layers with an enlarged interlayer spacing of 0.94 nm. When it is used as an anode material for LIBs, the enlarged interlayer spacing facilitates rapid intercalating and deintercalating of lithium ions and accommodates volume change during cycling. The high intrinsic conductivity of 1T‐MoS 2 also contributes to a faster transfer of lithium ions and electrons. Moreover, much smaller and fewer‐layer nanosheets can shorten the diffusion path of lithium ions and accelerate reaction kinetics, leading to an improved electrochemical performance. It delivers a high initial capacity of 920.6 mAh g −1 at 1 A g −1 and the capacity can maintain 870 mAh g −1 even after 300 cycles, showing a superior cycling stability. The electrode presents a high rate performance as well with a reversible capacity of 600 mAh g −1 at 10 A g −1 . These results show that the 1T‐MoS 2 /C hybrid shows potential for use in high‐performance lithium‐ion batteries.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here