z-logo
Premium
MoS 2 /NiS Yolk–Shell Microsphere‐Based Electrodes for Overall Water Splitting and Asymmetric Supercapacitor
Author(s) -
Qin Qing,
Chen Lulu,
Wei Tao,
Liu Xien
Publication year - 2019
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201803639
Subject(s) - supercapacitor , materials science , capacitance , electrochemistry , chemical engineering , electrode , current density , power density , energy storage , electrolysis , nanotechnology , water splitting , catalysis , chemistry , electrolyte , power (physics) , physics , quantum mechanics , engineering , biochemistry , photocatalysis
Rational designing of the composition and structure of electrode material is of great significance for achieving highly efficient energy storage and conversion in electrochemical energy devices. Herein, MoS 2 /NiS yolk–shell microspheres are successfully synthesized via a facile ionic liquid‐assisted one‐step hydrothermal method. With the favorable interface effect and hollow structure, the electrodes assembled with MoS 2 /NiS hybrid microspheres present remarkably enhanced electrochemical performance for both overall water splitting and asymmetric supercapacitors. In particular, to deliver a current density of 10 mA cm −2 , the MoS 2 /NiS‐based electrolysis cell for overall water splitting only needs an output voltage of 1.64 V in the alkaline medium, lower than that of Pt/C–IrO 2 ‐based electrolysis cells (1.70 V). As an electrode for supercapacitors, the MoS 2 /NiS hybrid microspheres exhibit a specific capacitance of 1493 F g −1 at current density of 0.2 A g −1 , and remain 1165 F g −1 even at a large current density of 2 A g −1 , implying outstanding charge storage capacity and excellent rate performance. The MoS 2 /NiS‐ and active carbon‐based asymmetric supercapacitor manifests a maximum energy density of 31 Wh kg −1 at a power density of 155.7 W kg −1 , and remarkable cycling stability with a capacitance retention of approximately 100% after 10 000 cycles.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom