z-logo
Premium
Engineering High‐Performance MoO 2 ‐Based Nanomaterials with Supercapacity and Superhydrophobicity by Tuning the Raw Materials Source
Author(s) -
Zhang Yunqiang,
Yang Song,
Wang Shulan,
Liu Hua Kun,
Li Li,
Dou Shi Xue,
Liu Xuan
Publication year - 2018
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201800480
Subject(s) - materials science , contact angle , sandpaper , wetting , fabrication , nanotechnology , nanomaterials , supercapacitor , raw material , corrosion , electrode , capacitance , composite material , medicine , chemistry , alternative medicine , organic chemistry , pathology
Herein, a simple self‐assembly method is proposed for the fabrication of MoO 2 ‐based superhydrophobic material with record high contact angles (contact angle up to about 173°) for conductive metal oxides on hard/soft substrates. The spin‐coated surface demonstrates excellent oil–water separation efficiency (>98%) after 50 cycles and robust corrosion resistance after immersion into different pH solutions for 20 d. These water‐resistant coatings retain excellent superhydrophobicity after oil immersion, knife‐scratch, and long‐cycle sandpaper abrasion, which is not observed on most artificial surfaces. Meanwhile, the functionality switching from superhydrophobicity to supercapacity, which have an inverse relationship in aqueous solutions because of poor electrode wettability, is achieved simply by editing the raw materials source. Tuning of the raw materials leads to the same product MoO 2 /graphitic carbon with different morphologies and functionalities. Different from superhydrophobic MoO 2 /carbon ball flowers, MoO 2 nanotubes with carbon exhibit excellent supercapacity with a large gravimetric capacitance and great cycling stability.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here