Premium
Tuning Surface Electronic Configuration of NiFe LDHs Nanosheets by Introducing Cation Vacancies (Fe or Ni) as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction
Author(s) -
Wang Yanyong,
Qiao Man,
Li Yafei,
Wang Shuangyin
Publication year - 2018
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201800136
Subject(s) - oxygen evolution , materials science , oxygen , chemical engineering , oxygen reduction reaction , nanotechnology , inorganic chemistry , electrochemistry , chemistry , electrode , organic chemistry , engineering
Intrinsically inferior electrocatalytic activity of NiFe layered double hydroxides (LDHs) nanosheets is considered as a limiting factor to inhibit the electrocatalytic properties for oxygen evolution reaction (OER). Proper defect engineering to tune the surface electronic configuration of electrocatalysts may significantly improve the intrinsic activity. In this work, the selective formation of cation vacancies in NiFe LDHs nanosheets is successfully realized. The as‐synthesized NiFe LDHs‐V Fe and NiFe LDHs‐V Ni electrocatalysts show excellent activity for OER, mainly attributed to the introduction of rich iron or nickel vacancies in NiFe LDHs nanosheets, which efficiently tune the surface electronic structure increasing the adsorbing capacity of OER intermediates. Density functional theory (DFT) computational results also further indicate that the OER catalytic performance of NiFe LDHs can be pronouncedly improved by introducing Fe or Ni vacancies.