z-logo
Premium
Soybean Lecithin‐Mediated Nanoporous PLGA Microspheres with Highly Entrapped and Controlled Released BMP‐2 as a Stem Cell Platform
Author(s) -
Wei Daixu,
Qiao Ruirui,
Dao Jinwei,
Su Jing,
Jiang Chengmin,
Wang Xichang,
Gao Mingyuan,
Zhong Jian
Publication year - 2018
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201800063
Subject(s) - plga , bone morphogenetic protein 2 , stem cell , chemistry , in vivo , nanoporous , controlled release , biomedical engineering , materials science , in vitro , nanotechnology , microbiology and biotechnology , biochemistry , biology , medicine
Injectable polymer microsphere‐based stem cell delivery systems have a severe problem that they do not offer a desirable environment for stem cell adhesion, proliferation, and differentiation because it is difficult to entrap a large number of hydrophilic functional protein molecules into the core of hydrophobic polymer microspheres. In this work, soybean lecithin (SL) is applied to entrap hydrophilic bone morphogenic protein‐2 (BMP‐2) into nanoporous poly(lactide‐co‐glycolide) (PLGA)‐based microspheres by a two‐step method: SL/BMP‐2 complexes preparation and PLGA/SL/BMP‐2 microsphere preparation. The measurements of their physicochemical properties show that PLGA/SL/BMP‐2 microspheres had significantly higher BMP‐2 entrapment efficiency and controlled triphasic BMP‐2 release behavior compared with PLGA/BMP‐2 microspheres. Furthermore, the in vitro and in vivo stem cell behaviors on PLGA/SL/BMP‐2 microspheres are analyzed. Compared with PLGA/BMP‐2 microspheres, PLGA/SL/BMP‐2 microspheres have significantly higher in vitro and in vivo stem cell attachment, proliferation, differentiation, and matrix mineralization abilities. Therefore, injectable nanoporous PLGA/SL/BMP‐2 microspheres can be potentially used as a stem cell platform for bone tissue regeneration. In addition, SL can be potentially used to prepare hydrophilic protein‐loaded hydrophobic polymer microspheres with highly entrapped and controlled release of proteins.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom