Premium
Direct Imaging of Space‐Charge Accumulation and Work Function Characteristics of Functional Organic Interfaces
Author(s) -
Siles Pablo F.,
Devarajulu Mirunalini,
Zhu Feng,
Schmidt Oliver G.
Publication year - 2018
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201703647
Subject(s) - work function , ambipolar diffusion , kelvin probe force microscope , materials science , nanotechnology , dipole , nanoscopic scale , space charge , organic semiconductor , charge carrier , optoelectronics , chemical physics , chemistry , electron , physics , atomic force microscopy , organic chemistry , layer (electronics) , quantum mechanics
The tailoring of organic systems is crucial to further extend the efficiency of charge transfer mechanisms and represents a cornerstone for molecular device technologies. However, this demands control of electrical properties and understanding of the physics behind organic interfaces. Here, a quantitative spatial overview of work function characteristics for phthalocyanine architectures on Au substrates is provided via kelvin probe microscopy. While macroscopic investigations are very informative, the current approach offers a nanoscale spatial rendering of electrical characteristics which is not possible to attain via conventional techniques. Interface dipole is observed due to the formation of charge accumulation layers in thin F 16 CuPc, F 16 CoPc, and MnPc films, displaying work functions of 5.7, 6.1, and 5.0 eV, respectively. The imaging and quantification of interface locations with significant surface potential and work function response (<0.33 eV for material thickness <1 nm) show also a dependency on the crystalline state of the organic systems. The work function mapping suggests space‐charge carrier regions of about 4 nm at the organic interface. This reveals rich spatial electric parameters and ambipolar characteristics that may drive electrical performance at device scales, opening a realm of possibilities toward the development of functional organic architectures and its applications.