z-logo
Premium
Fast Postmoisture Treatment of Luminescent Perovskite Films for Efficient Light‐Emitting Diodes
Author(s) -
Wang Haoran,
Li Xiaomin,
Yuan Mingjian,
Yang Xuyong
Publication year - 2018
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201703410
Subject(s) - perovskite (structure) , materials science , electroluminescence , luminescence , photoluminescence , crystallinity , light emitting diode , optoelectronics , moisture , diode , nanotechnology , chemical engineering , layer (electronics) , composite material , engineering
Abstract Despite the recent advances in the performance of perovskite light‐emitting diodes (PeLEDs), the effects of water on the perovskite emissive layer and its electroluminescence are still unclear, even though it has been previously demonstrated that moisture has a significant impact on the quality of perovskite films in the fabrication process of perovskite solar cells and is a prerequisite for obtaining high‐performance PeLEDs. Here, the effects of postmoisture on the luminescent CH 3 NH 3 PbBr 3 (MAPbBr 3 ) perovskite films are systematically investigated. It is found that postmoisture treatment can efficiently control the morphology and growth of perovskite films and only a fast moisture exposure at a 60% high relative humidity results in significantly improved crystallinity, carrier lifetime, and photoluminescence quantum yield of perovskite films. With the optimized moisture‐treated perovskite films, a high‐performance PeLED is fabricated, exhibiting a maximum current efficiency of 20.4 cd A −1 , which is an almost 20‐fold enhancement when compared with perovskite films without moisture treatment. The results provide valuable insights into the moisture‐assisted growth of luminescent perovskite films and will aid in the development of high‐performance perovskite light‐emitting devices.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here