z-logo
Premium
Effective Labeling of Primary Somatic Stem Cells with BaTiO 3 Nanocrystals for Second Harmonic Generation Imaging
Author(s) -
Sugiyama Nami,
Sonay Ali Y.,
Tussiwand Roxanne,
Cohen Bruce E.,
Pantazis Periklis
Publication year - 2018
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201703386
Subject(s) - stem cell , intracellular , materials science , progenitor cell , somatic cell , microbiology and biotechnology , biophysics , haematopoiesis , nanotechnology , chemistry , biology , biochemistry , gene
While nanoparticles are an increasingly popular choice for labeling and tracking stem cells in biomedical applications such as cell therapy, their intracellular fate and subsequent effect on stem cell differentiation remain elusive. To establish an effective stem cell labeling strategy, the intracellular nanocrystal concentration should be minimized to avoid adverse effects, without compromising the intensity and persistence of the signal necessary for long‐term tracking. Here, the use of second‐harmonic generating barium titanate nanocrystals is reported, whose achievable brightness allows for high contrast stem cell labeling with at least one order of magnitude lower intracellular nanocrystals than previously reported. Their long‐term photostability enables to investigate quantitatively at the single cell level their cellular fate in hematopoietic stem cells (HSCs) using both multiphoton and electron microscopy. It is found that the concentration of nanocrystals in proliferative multipotent progenitors is over 2.5‐fold greater compared to quiescent stem cells; this difference vanishes when HSCs enter a nonquiescent, proliferative state, while their potency remains unaffected. Understanding the nanoparticle stem cell interaction allows to establish an effective and safe nanoparticle labeling strategy into somatic stem cells that can critically contribute to an understanding of their in vivo therapeutic potential.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here