Premium
Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability
Author(s) -
Tang Xian,
Liang Weiyuan,
Zhao Jinlai,
Li Zhongjun,
Qiu Meng,
Fan Taojian,
Luo Crystal Shaojuan,
Zhou Ye,
Li Yu,
Guo Zhinan,
Fan Dianyuan,
Zhang Han
Publication year - 2017
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201702739
Subject(s) - phosphorene , exfoliation joint , materials science , photothermal therapy , chemical physics , band gap , ionic bonding , ionic liquid , electrochemistry , electrolyte , nanotechnology , nanophotonics , graphene , chemical engineering , optoelectronics , ion , chemistry , organic chemistry , catalysis , electrode , engineering
Abstract Phosphorene has attracted great interest due to its unique electronic and optoelectronic properties owing to its tunable direct and moderate band‐gap in association with high carrier mobility. However, its intrinsic instability in air seriously hinders its practical applications, and problems of technical complexity and in‐process degradation exist in currently proposed stabilization strategies. A facile pathway in obtaining and stabilizing phosphorene through a one‐step, ionic liquid‐assisted electrochemical exfoliation and synchronous fluorination process is reported in this study. This strategy enables fluorinated phosphorene (FP) to be discovered and large‐scale, highly selective few‐layer FP (3−6 atomic layers) to be obtained. The synthesized FP is found to exhibit unique morphological and optical characteristics. Possible atomistic fluorination configurations of FP are revealed by core‐level binding energy shift calculations in combination with spectroscopic measurements, and the results indicate that electrolyte concentration significantly modulates the fluorination configurations. Furthermore, FP is found to exhibit enhanced air stability thanks to the antioxidation and antihydration effects of the introduced fluorine adatoms, and demonstrate excellent photothermal stability during a week of air exposure. These findings pave the way toward real applications of phosphorene‐based nanophotonics.