z-logo
Premium
A New Co‐P Nanocomposite with Ultrahigh Relaxivity for In Vivo Magnetic Resonance Imaging‐Guided Tumor Eradication by Chemo/Photothermal Synergistic Therapy
Author(s) -
Liu Jianhua,
Jin Longhai,
Wang Yinghui,
Ding Xing,
Zhang Songtao,
Song Shuyan,
Wang Daguang,
Zhang Hongjie
Publication year - 2018
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201702431
Subject(s) - photothermal therapy , in vivo , magnetic resonance imaging , materials science , nanocomposite , nanotechnology , gadolinium , biomedical engineering , medicine , radiology , microbiology and biotechnology , biology , metallurgy
Design of new nanoagents that intrinsically have both diagnostic imaging and therapeutic capabilities is highly desirable for personalized medicine. In this work, a novel nanotheranostic agent is fabricated based on polydopamine (PDA)‐functionalized Co‐P nanocomposites (Co‐P@PDA) for magnetic resonance imaging (MRI)‐guided combined photothermal therapy and chemotherapy. The ultrahigh relaxivity of 224.61 m m −1 s −1 can enable Co‐P@PDA to be applied as an excellent contrast agent for MRI in vitro and in vivo, providing essential and comprehensive information for tumor clinical diagnosis. Moreover, Co‐P@PDA exhibit excellent photothermal performance owing to the strong near‐infrared (NIR) absorbance of both Co‐P nanocomposite and PDA. Highly effective ablation of tumors is achieved in a murine tumor model because the NIR laser not only induces photothermal effects but also triggers the chemotherapeutic drug on‐demand release, which endows the Co‐P@PDA with high curative effects but little toxicity and few side effects. These findings demonstrate that Co‐P@PDA are promising agents for highly effective and precise antitumor treatment and warrant exploration as novel theranostic nanoagents with good potential for future clinical translation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here