z-logo
Premium
Piezo‐Phototronic Matrix via a Nanowire Array
Author(s) -
Zhang Yang,
Zhai Junyi,
Wang Zhong Lin
Publication year - 2017
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201702377
Subject(s) - nanowire , materials science , matrix (chemical analysis) , nanotechnology , optoelectronics , composite material
Piezoelectric semiconductors, such as ZnO and GaN, demonstrate multiproperty coupling effects toward various aspects of mechanical, electrical, and optical excitation. In particular, the three‐way coupling among semiconducting, photoexcitation, and piezoelectric characteristics in wurtzite‐structured semiconductors is established as a new field, which was first coined as piezo‐phototronics by Wang in 2010. The piezo‐phototronic effect can controllably modulate the charge‐carrier generation, separation, transport, and/or recombination in optical‐electronic processes by modifying the band structure at the metal–semiconductor or semiconductor–semiconductor heterojunction/interface. Here, the progress made in using the piezo‐phototronic effect for enhancing photodetectors, pressure sensors, light‐emitting diodes, and solar cells is reviewed. In comparison with previous works on a single piezoelectric semiconducting nanowire, piezo‐phototronic nanodevices built using nanowire arrays provide a promising platform for fabricating integrated optoelectronics with the realization of high‐spatial‐resolution imaging and fast responsivity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here