Premium
Surface‐Engineering of Red Blood Cells as Artificial Antigen Presenting Cells Promising for Cancer Immunotherapy
Author(s) -
Sun Xiaoqi,
Han Xiao,
Xu Ligeng,
Gao Min,
Xu Jun,
Yang Rong,
Liu Zhuang
Publication year - 2017
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201701864
Subject(s) - cancer immunotherapy , immune system , immunotherapy , antigen presenting cell , major histocompatibility complex , antigen , adoptive cell transfer , t cell , biology , cytotoxic t cell , immunology , cd28 , cd8 , microbiology and biotechnology , cancer research , biochemistry , in vitro
The development of artificial antigen presenting cells (aAPCs) to mimic the functions of APCs such as dendritic cells (DCs) to stimulate T cells and induce antitumor immune responses has attracted substantial interests in cancer immunotherapy. In this work, a unique red blood cell (RBC)‐based aAPC system is designed by engineering antigen peptide‐loaded major histocompatibility complex‐I and CD28 activation antibody on RBC surface, which are further tethered with interleukin‐2 (IL2) as a proliferation and differentiation signal. Such RBC‐based aAPC‐IL2 (R‐aAPC‐IL2) can not only provide a flexible cell surface with appropriate biophysical parameters, but also mimic the cytokine paracrine delivery. Similar to the functions of matured DCs, the R‐aAPC‐IL2 cells can facilitate the proliferation of antigen‐specific CD8+ T cells and increase the secretion of inflammatory cytokines. As a proof‐of‐concept, we treated splenocytes from C57 mice with R‐aAPC‐IL2 and discovered those splenocytes induced significant cancer‐cell‐specific lysis, implying that the R‐aAPC‐IL2 were able to re‐educate T cells and induce adoptive immune response. This work thus presents a novel RBC‐based aAPC system which can mimic the functions of antigen presenting DCs to activate T cells, promising for applications in adoptive T cell transfer or even in direct activation of circulating T cells for cancer immunotherapy.