z-logo
Premium
Friction and Wetting Transitions of Magnetic Droplets on Micropillared Superhydrophobic Surfaces
Author(s) -
AlAzawi Anas,
Latikka Mika,
Jokinen Ville,
Franssila Sami,
Ras Robin H. A.
Publication year - 2017
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201700860
Subject(s) - wetting , materials science , dissipation , hysteresis , dissipative system , wetting transition , contact angle , mechanics , nanotechnology , composite material , condensed matter physics , physics , thermodynamics
Reliable characterization of wetting properties is essential for the development and optimization of superhydrophobic surfaces. Here, the dynamics of superhydrophobicity is studied including droplet friction and wetting transitions by using droplet oscillations on micropillared surfaces. Analyzing droplet oscillations by high‐speed camera makes it possible to obtain energy dissipation parameters such as contact angle hysteresis force and viscous damping coefficients, which indicate pinning and viscous losses, respectively. It is shown that the dissipative forces increase with increasing solid fraction and magnetic force. For 10 µm diameter pillars, the solid fraction range within which droplet oscillations are possible is between 0.97% and 2.18%. Beyond the upper limit, the oscillations become heavily damped due to high friction force. Below the lower limit, the droplet is no longer supported by the pillar tops and undergoes a Cassie–Wenzel transition. This transition is found to occur at lower pressure for a moving droplet than for a static droplet. The findings can help to optimize micropillared surfaces for low‐friction droplet transport.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here