Premium
Multiplexed Nucleic Acid Hybridization Assays Using Single‐FRET‐Pair Distance‐Tuning
Author(s) -
Qiu Xue,
Guo Jiajia,
Jin Zongwen,
Petreto Alexandra,
Medintz Igor L.,
Hildebrandt Niko
Publication year - 2017
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201700332
Subject(s) - nucleic acid , förster resonance energy transfer , multiplexing , nucleic acid detection , computational biology , nanotechnology , nucleic acid thermodynamics , materials science , dna , chemistry , biophysics , base sequence , fluorescence , biology , computer science , biochemistry , physics , optics , telecommunications
Multiplexed photoluminescence (PL) detection plays an important role in chemical and biological sensing. Here, it is shown that time‐gated (TG) detection of a single terbium‐donor‐based Förster resonance energy transfer (FRET) pair can be used to selectively quantify low nanomolar concentrations of multiple DNAs or microRNAs in a single sample. This study demonstrates the applicability of single‐TG‐FRET‐pair multiplexing for molecular (Tb‐to‐dye) and nanoparticle (Tb‐to‐quantum‐dot) biosensing. Both systems use acceptor‐sensitization and donor‐quenching for quantifying biomolecular recognition and modification of the donor–acceptor distance for tuning the PL decays. TG intensity detection provides extremely low background noise and a quick and simple one‐step assay format. Single‐TG‐FRET‐pair multiplexing can be combined with spectral and spatial resolution, paving the way for biosensing with unprecedented high‐order multiplexing capabilities.