Premium
Novel Structure for High Performance UV Photodetector Based on BiOCl/ZnO Hybrid Film
Author(s) -
Teng Feng,
Ouyang Weixin,
Li Yanmei,
Zheng Lingxia,
Fang Xiaosheng
Publication year - 2017
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201700156
Subject(s) - materials science , photodetector , responsivity , photocurrent , optoelectronics , nanostructure , ultraviolet , thin film , electrode , hybrid material , photocatalysis , electron , nanocrystalline material , nanotechnology , biochemistry , chemistry , physics , quantum mechanics , catalysis
A novel type of high performance ultraviolet (UV) photodetector (PD) based on a ZnO film has been prepared by incorporating a BiOCl nanostructure into the film. The responsivity of the BiOCl/ZnO hybrid film PD in UV region can reach 182.87 mA W −1 , which is about 2.72 and 6.87 times for that of TiO 2 /ZnO hybrid film PD and pure ZnO film PD. The rise/decay time of BiOCl/ZnO hybrid film PD is 25.83/11.25 s, which is much shorter than that of TiO 2 /ZnO hybrid film PD (51.94/26.05 s) and pure ZnO film PD (69.34/>120 s). The BiOCl nanostructure can inject photogenerated electrons into the ZnO film under UV light illumination, leading to the increase of photocurrent, and forms barriers to block the straight transmission of electrons between electrodes, resulting in the decrease of decay time. The results of control experiment show that the transfer path of photogenerated electrons formed by p–n junction will be cut off after depositing gold nanoparticles on the film surface, which means this hybrid film is a unique and novel structure to improve the optoelectronic performance of photodetectors. This novel BiOCl/ZnO hybrid structure paves new route for the development of film PDs based on ZnO film.