z-logo
Premium
GaP/GaNP Heterojunctions for Efficient Solar‐Driven Water Oxidation
Author(s) -
Kargar Alireza,
Sukritta Supanee,
Zhou Chang,
Ro Yun Goo,
Pan Xiaoqing,
Dayeh Shadi A.,
Tu Charles W.,
Jin Sungho
Publication year - 2017
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201603574
Subject(s) - heterojunction , photocurrent , materials science , band gap , optoelectronics , substrate (aquarium) , absorption (acoustics) , thin film , molecular beam epitaxy , nanotechnology , epitaxy , layer (electronics) , composite material , geology , oceanography
The growth and characterization of an n‐GaP/i‐GaNP/p + ‐GaP thin film heterojunction synthesized using a gas‐source molecular beam epitaxy (MBE) method, and its application for efficient solar‐driven water oxidation is reported. The TiO 2 /Ni passivated n‐GaP/i‐GaNP/p + ‐GaP thin film heterojunction provides much higher photoanodic performance in 1 m KOH solution than the TiO 2 /Ni‐coated n‐GaP substrate, leading to much lower onset potential and much higher photocurrent. There is a significant photoanodic potential shift of 764 mV at a photocurrent of 0.34 mA cm −2 , leading to an onset potential of ≈0.4 V versus reversible hydrogen electrode (RHE) at 0.34 mA cm −2 for the heterojunction. The photocurrent at the water oxidation potential (1.23 V vs RHE) is 1.46 and 7.26 mA cm −2 for the coated n‐GaP and n‐GaP/i‐GaNP/p + ‐GaP photoanodes, respectively. The passivated heterojunction offers a maximum applied bias photon‐to‐current efficiency (ABPE) of 1.9% while the ABPE of the coated n‐GaP sample is almost zero. Furthermore, the coated n‐GaP/i‐GaNP/p + ‐GaP heterojunction photoanode provides a broad absorption spectrum up to ≈620 nm with incident photon‐to‐current efficiencies (IPCEs) of over 40% from ≈400 to ≈560 nm. The high low‐bias performance and broad absorption of the wide‐bandgap GaP/GaNP heterojunctions render them as a promising photoanode material for tandem photoelectrochemical (PEC) cells to carry out overall solar water splitting.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here