Premium
Mussel Adhesion‐Inspired Reverse Transfection Platform Enhances Osteogenic Differentiation and Bone Formation of Human Adipose‐Derived Stem Cells
Author(s) -
Shin Jisoo,
Cho Jung Ho,
Jin Yoonhee,
Yang Kisuk,
Lee Jong Seung,
Park HyunJi,
Han HyungSeop,
Lee Jinkyu,
Jeon Hojeong,
Shin Heungsoo,
Cho SeungWoo
Publication year - 2016
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201601868
Subject(s) - transfection , stem cell , microbiology and biotechnology , plga , chemistry , adipose tissue , gene silencing , small interfering rna , mesenchymal stem cell , materials science , biomedical engineering , biology , biochemistry , in vitro , medicine , gene
Using small interfering RNA (siRNA) to regulate gene expression is an emerging strategy for stem cell manipulation to improve stem cell therapy. However, conventional methods of siRNA delivery into stem cells based on solution‐mediated transfection are limited due to low transfection efficiency and insufficient duration of cell‐siRNA contact during lengthy culturing protocols. To overcome these limitations, a bio‐inspired polymer‐mediated reverse transfection system is developed consisting of implantable poly(lactic‐co‐glycolic acid) (PLGA) scaffolds functionalized with siRNA‐lipidoid nanoparticle (sLNP) complexes via polydopamine (pDA) coating. Immobilized sLNP complexes are stably maintained without any loss of siRNA on the pDA‐coated scaffolds for 2 weeks, likely due to the formation of strong covalent bonds between amine groups of sLNP and catechol group of pDA. siRNA reverse transfection with the pDA‐sLNP‐PLGA system does not exhibit cytotoxicity and induces efficient silencing of an osteogenesis inhibitor gene in human adipose‐derived stem cells (hADSCs), resulting in enhanced osteogenic differentiation of hADSCs. Finally, hADSCs osteogenically committed on the pDA‐sLNP‐PLGA scaffolds enhanced bone formation in a mouse model of critical‐sized bone defect. Therefore, the bio‐inspired reverse transfection system can provide an all‐in‐one platform for genetic modification, differentiation, and transplantation of stem cells, simultaneously enabling both stem cell manipulation and tissue engineering.