Premium
Organ‐on‐a‐Chip Systems: Microengineering to Biomimic Living Systems
Author(s) -
Zheng Fuyin,
Fu Fanfan,
Cheng Yao,
Wang Chunyan,
Zhao Yuanjin,
Gu Zhongze
Publication year - 2016
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201503208
Subject(s) - organ on a chip , nanotechnology , computer science , organ system , microfluidic chip , microfluidics , neuroscience , biology , disease , medicine , pathology , materials science
“Organ‐on‐a‐chip” systems integrate microengineering, microfluidic technologies, and biomimetic principles to create key aspects of living organs faithfully, including critical microarchitecture, spatiotemporal cell–cell interactions, and extracellular microenvironments. This creative platform and its multiorgan integration recapitulating organ‐level structures and functions can bring unprecedented benefits to a diversity of applications, such as developing human in vitro models for healthy or diseased organs, enabling the investigation of fundamental mechanisms in disease etiology and organogenesis, benefiting drug development in toxicity screening and target discovery, and potentially serving as replacements for animal testing. Recent advances in novel designs and examples for developing organ‐on‐a‐chip platforms are reviewed. The potential for using this emerging technology in understanding human physiology including mechanical, chemical, and electrical signals with precise spatiotemporal controls are discussed. The current challenges and future directions that need to be pursued for these proof‐of‐concept studies are also be highlighted.