z-logo
Premium
Probing Bio–Nano Interactions between Blood Proteins and Monolayer‐Stabilized Graphene Sheets
Author(s) -
Gan Shiyu,
Zhong Lijie,
Han Dongxue,
Niu Li,
Chi Qijin
Publication year - 2015
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201501819
Subject(s) - graphene , nanotechnology , monolayer , nano , materials science , composite material
Meeting proteins is regarded as the starting event for nanostructures to enter biological systems. Understanding their interactions is thus essential for a newly emerging field, nanomedicine. Chemically converted graphene (CCG) is a wonderful two‐dimesional (2D) material for nanomedecine, but its stability in biological environments is limited. Systematic probing on the binding of proteins to CCG is currently lacking. Herein, we report a comprehensive study on the interactions between blood proteins and stabilized CCG (sCCG). CCG nanosheets are functionalized by monolayers of perylene leading to significant improvement in their resistance to electrolyte salts and long‐term stability, but retain their core structural characteristics. Five types of model human blood proteins including human fibrinogen, γ‐globulin, bovine serum albumin (BSA), insulin, and histone are tested. The main drving forces for blood protein binding involve the π–π interacations between the π‐plane of sCCG and surface aromatic amonic acid (sAA) residues of proteins. Several key binding parameters including the binding amount, Hill coefficient, and binding constant are determined. Through a detailed analysis of key controlling factors, we conclude that the protein binding to sCCG is determined mainly by the protein size, the number, and the density of the sAA.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here