Premium
Cell‐Instructive Microgels with Tailor‐Made Physicochemical Properties
Author(s) -
Allazetta Simone,
Kolb Laura,
Zerbib Samantha,
Bardy Jo'an,
Lutolf Matthias P.
Publication year - 2015
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201501001
Subject(s) - nanotechnology , materials science , chemistry
A microfluidic in vitro cell encapsulation platform to systematically test the effects of microenvironmental parameters on cell fate in 3D is developed. Multiple cell types including fibroblasts, embryonic stem cells, and cancer cells are incorporated in enzymatically cross‐linked poly(ethylene glycol)‐based microgels having defined and tunable mechanical and biochemical properties. Furthermore, different approaches to prevent cell “escape” from the microcapsules are explored and shown to substantially enhance the potential of this technology. Finally, coencapsulation of microgels within nondegradable gels allows cell viability, proliferation, and morphology to be studied in different microenvironmental conditions up to two weeks in culture.