Premium
Plasmofluidics: Merging Light and Fluids at the Micro‐/Nanoscale
Author(s) -
Wang Mingsong,
Zhao Chenglong,
Miao Xiaoyu,
Zhao Yanhui,
Rufo Joseph,
Liu Yan Jun,
Huang Tony Jun,
Zheng Yuebing
Publication year - 2015
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201500970
Subject(s) - library science , engineering , science and engineering , graduate students , engineering physics , engineering ethics , sociology , computer science , pedagogy
Plasmofluidics is the synergistic integration of plasmonics and micro/nanofluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids and precise manipulation via micro/nanofluidics, plasmofluidic technologies enable innovations in lab‐on‐a‐chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, the most recent advances in plasmofluidics are examined and categorized into plasmon‐enhanced functionalities in microfluidics and microfluidics‐enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro/nanoscale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance‐enhanced plasmonic sensors. The article is concluded with perspectives on the upcoming challenges, opportunities, and possible future directions of the emerging field of plasmofluidics.