z-logo
Premium
Metal–Organic Framework‐Derived Bamboo‐like Nitrogen‐Doped Graphene Tubes as an Active Matrix for Hybrid Oxygen‐Reduction Electrocatalysts
Author(s) -
Li Qing,
Pan Hengyu,
Higgins Drew,
Cao Ruiguo,
Zhang Guoqi,
Lv Haifeng,
Wu Kangbing,
Cho Jaephil,
Wu Gang
Publication year - 2015
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201402069
Subject(s) - catalysis , graphene , materials science , nanoparticle , chemical engineering , metal , inorganic chemistry , nanotechnology , chemistry , organic chemistry , metallurgy , engineering
In this work, large size (i.e., diameter > 100 nm) graphene tubes with nitrogen‐doping are prepared through a high‐temperature graphitization process of dicyandiamide (DCDA) and Iron(II) acetate templated by a novel metal–organic framework (MIL‐100(Fe)). The nitrogen‐doped graphene tube (N‐GT)‐rich iron‐nitrogen‐carbon (Fe‐N‐C) catalysts exhibit inherently high activity towards the oxygen reduction reaction (ORR) in more challenging acidic media. Furthermore, aiming to improve the activity and stability of conventional Pt catalysts, the ORR active N‐GT is used as a matrix to disperse Pt nanoparticles in order to build a unique hybrid Pt cathode catalyst. This is the first demonstration of the integration of a highly active Fe‐N‐C catalyst with Pt nanoparticles. The synthesized 20% Pt/N‐GT composite catalysts demonstrate significantly enhanced ORR activity and H 2 ‐air fuel cell performance relative to those of 20% Pt/C, which is mainly attributed to the intrinsically active N‐GT matrix along with possible synergistic effects between the non‐precious metal active sites and the Pt nanoparticles. Unlike traditional Pt/C, the hybrid catalysts exhibit excellent stability during the accelerated durability testing, likely due to the unique highly graphitized graphene tube morphologies, capable of providing strong interaction with Pt nanoparticles and then preventing their agglomeration.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here