z-logo
Premium
Shape‐Shifting 3D Protein Microstructures with Programmable Directionality via Quantitative Nanoscale Stiffness Modulation
Author(s) -
Lee Mian Rong,
Phang In Yee,
Cui Yan,
Lee Yih Hong,
Ling Xing Yi
Publication year - 2015
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201401343
Subject(s) - materials science , microstructure , nanoscopic scale , nanotechnology , laser , microtechnology , stiffness , modulus , directionality , fabrication , optoelectronics , optics , composite material , medicine , physics , alternative medicine , pathology , biology , genetics
The ability to shape‐shift in response to a stimulus increases an organism's survivability in nature. Similarly, man‐made dynamic and responsive “smart” microtechnology is crucial for the advancement of human technology. Here, 10–30 μm shape‐changing 3D BSA protein hydrogel microstructures are fabricated with dynamic, quantitative, directional, and angle‐resolved bending via two‐photon photolithography. The controlled directional responsiveness is achieved by spatially controlling the cross‐linking density of BSA at a nanometer lengthscale. Atomic force microscopy measurements of Young's moduli of structures indicate that increasing the laser writing distance at the z‐axis from 100–500 nm decreases the modulus of the structure. Hence, through nanoscale modulation of the laser writing z‐layer distance at the nanoscale, control over the cross‐linking density is possible, allowing for the swelling extent of the microstructures to be quantified and controlled with high precision. This method of segmented moduli is applied within a single microstructure for the design of shape‐shifting microstructures that exhibit stimulus‐induced chirality, as well as for the fabrication of a free‐standing 3D microtrap which is able to open and close in response to a pH change.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom