Premium
Molecular Imaging Using Nanoparticle Quenchers of Cerenkov Luminescence
Author(s) -
Thorek Daniel L. J.,
Das Sudeep,
Grimm Jan
Publication year - 2014
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201400733
Subject(s) - molecular imaging , in vivo , nanoparticle , somatostatin receptor , chemistry , molecular probe , conjugated system , iron oxide nanoparticles , cancer research , materials science , nanotechnology , biophysics , receptor , medicine , biology , biochemistry , organic chemistry , microbiology and biotechnology , polymer , dna
Cerenkov luminescence (CL) imaging is an emerging technique that collects the visible photons produced by radioisotopes. Here, molecular imaging strategies are investigated that switch the CL signal off. The noninvasive molecularly specific detection of cancer is demonstrated utilizing a combination of clinically approved agents, and their analogues. CL is modulated in vitro in a dose dependent manner using approved small molecules (Lymphazurin), as well as the clinically approved Feraheme and other preclinical superparamagnetic iron oxide nanoparticles (SPIO). To evaluate the quenching of CL in vivo, two strategies are pursued. [ 18 F]‐FDG is imaged by PET and CL in tumors prior to and following accumulation of nanoparticles. Initially, non‐targeted particles are administered to mice bearing tumors in order to attenuate CL. For targeted imaging, a dual tumor model (expressing the human somatostatin receptor subtype‐2 (hSSTr2) and a control negative cell line) is used. Targeting hSSTr2 with octreotate‐conjugated SPIO, quenched CL enabling non‐invasive distinction between tumors' molecular expression profiles is demonstrated. In this work, the quenching of Cerenkov emissions is demonstrated in several proof of principle models using a combination of approved agents and nanoparticle platforms to provide disease relevant information including tumor vascularity and specific antigen expression.