Premium
High Electrocatalytic and Wettable Nitrogen‐Doped Microwave‐Exfoliated Graphene Nanosheets as Counter Electrode for Dye‐Sensitized Solar Cells
Author(s) -
Zhai Peng,
Wei TzuChien,
Chang YaHuei,
Huang YuTing,
Yeh WeiTing,
Su Haijun,
Feng ShienPing
Publication year - 2014
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201400628
Subject(s) - dye sensitized solar cell , materials science , graphene , electrode , electrolyte , auxiliary electrode , chemical engineering , doping , microwave , graphene foam , nanotechnology , inorganic chemistry , optoelectronics , graphene nanoribbons , chemistry , physics , quantum mechanics , engineering
In this paper, high electrocatalytic and wettable nitrogen‐doped microwave‐exfoliated graphene (N‐MEG) nanosheets are used as Pt‐free counter electrode (CE) for dye‐sensitized solar cells (DSSCs). A low cost solution‐based process is developed by using cyanamide (NH 2 CN) at room temperature and normal pressure. The pyrrolic and pyridinic N atoms are doped into the carbon conjugated lattice to enhance electrocatalytic activity. N‐MEG film having N‐doping active sites and large porosity provides a wettable surface to facilitate electrolyte diffusion so that improves fill factor. Moreover, the control of the air exposure time after completing N‐MEG film is found to be crucial to obtain a reliable N‐MEG CE. A high DSSC efficiency up to 7.18% can be achieved based on N‐MEG CE, which is nearly comparable to conventional Pt CE.