z-logo
Premium
Polymer Powder Processing of Cryomilled Polycaprolactone for Solvent‐Free Generation of Homogeneous Bioactive Tissue Engineering Scaffolds
Author(s) -
Lim Jing,
Chong Mark Seow Khoon,
Chan Jerry Kok Yen,
Teoh SweeHin
Publication year - 2014
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201302389
Subject(s) - polycaprolactone , materials science , composite number , polymer , tissue engineering , surface modification , chemical engineering , fabrication , biomedical engineering , composite material , medicine , alternative medicine , pathology , engineering
Synthetic polymers used in tissue engineering require functionalization with bioactive molecules to elicit specific physiological reactions. These additives must be homogeneously dispersed in order to achieve enhanced composite mechanical performance and uniform cellular response. This work demonstrates the use of a solvent‐free powder processing technique to form osteoinductive scaffolds from cryomilled polycaprolactone (PCL) and tricalcium phosphate (TCP). Cryomilling is performed to achieve micrometer‐sized distribution of PCL and reduce melt viscosity, thus improving TCP distribution and improving structural integrity. A breakthrough is achieved in the successful fabrication of 70 weight percentage of TCP into a continuous film structure. Following compaction and melting, PCL/TCP composite scaffolds are found to display uniform distribution of TCP throughout the PCL matrix regardless of composition. Homogeneous spatial distribution is also achieved in fabricated 3D scaffolds. When seeded onto powder‐processed PCL/TCP films, mesenchymal stem cells are found to undergo robust and uniform osteogenic differentiation, indicating the potential application of this approach to biofunctionalize scaffolds for tissue engineering applications.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here