z-logo
Premium
Transdermal Delivery Devices: Fabrication, Mechanics and Drug Release from Silk
Author(s) -
Raja Waseem K.,
MacCorkle Scott,
Diwan Izzuddin M.,
Abdurrob Abdurrahman,
Lu Jessica,
Omenetto Fiorenzo G.,
Kaplan David L.
Publication year - 2013
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201202075
Subject(s) - transdermal , biocompatibility , silk , materials science , drug delivery , nanotechnology , fabrication , biomedical engineering , controlled release , biomaterial , composite material , medicine , pharmacology , alternative medicine , pathology , metallurgy
Microneedles are a relatively simple, minimally invasive and painless approach to deliver drugs across the skin. However, there remain limitations with this approach because of the materials most commonly utilized for such systems. Silk protein, with tunable and biocompatibility properties, is a useful biomaterial to overcome the current limitations with microneedles. Silk devices preserve drug activity, offer superior mechanical properties and biocompatibility, can be tuned for biodegradability, and can be processed under aqueous, benign conditions. In the present work, the fabrication of dense microneedle arrays from silk with different drug release kinetics is reported. The mechanical properties of the microneedle patches are tuned by post‐fabrication treatments or by loading the needles with silk microparticles, to increase capacity and mechanical strength. Drug release is further enhanced by the encapsulation of the drugs in the silk matrix and coating with a thin dissolvable drug layer. The microneedles are used on human cadaver skin and drugs are delivered successfully. The various attributes demonstrated suggest that silk‐based microneedle devices can provide significant benefit as a platform material for transdermal drug delivery.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here