z-logo
Premium
Magnetic Graphitic Nanocapsules for Programmed DNA Fishing and Detection
Author(s) -
Song ZhiLing,
Zhao XuHua,
Liu WeiNa,
Ding Ding,
Bian Xia,
Liang Hao,
Zhang XiaoBing,
Chen Zhuo,
Tan Weihong
Publication year - 2013
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.201201975
Subject(s) - biosensor , nanotechnology , nanosensor , biomolecule , nanomaterials , nanocapsules , materials science , graphene , fluorescence , carbon nanotube , magnetic nanoparticles , nanoparticle , physics , quantum mechanics
Graphene nanomaterials are typically used in biosensing applications, and they have been demonstrated as good fluorescence quenchers. While many conventional amplification platforms are available, developing new nanomaterials and establishing simple, enzyme‐free and low‐cost strategies for high sensitivity biosensing is still challenging. Therefore, in this work, a core–shell magnetic graphitic nanocapsule (MGN) material is synthesized and its capabilities for the detection of biomolecules are investigated. MGN combines the unique properties of graphene and magnetic particles into one simple and sensitive biosensing platform, which quenches around 98% of the dye fluorescence within minutes. Based on a programmed multipurpose DNA capturing and releasing strategy, the MGN sensing platform demonstrates an outstanding capacity to fish, enrich, and detect DNA. Target DNA molecules as low as 50 pM could be detected, which is 3‐fold lower than the limit of detection commonly achieved by carbon nanotube and graphene‐based fluorescent biosensors. Moreover, the MGN platform exhibits good sensing specificity against DNA mismatch tests. Overall, therefore, these magnetic graphitic nanocapsules demonstrate a promising tool for molecular disease diagnosis and biomedicine. This simple fishing and enrichment strategy may also be extended to other biological and environmental applications and systems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here