z-logo
Premium
Label‐Free Attomolar Detection of Proteins Using Integrated Nanoelectronic and Electrokinetic Devices
Author(s) -
Gong JianRu
Publication year - 2010
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.200902132
Subject(s) - electrokinetic phenomena , dielectrophoresis , nanotechnology , materials science , microfluidics , nanowire , transistor , voltage , physics , quantum mechanics
High‐sensitivity screening of biomarkers is critical to areas ranging from early disease detection and diagnosis to bioterrorism surveillance. Here the development of integrated nanoelectronic and electrokinetic devices for label‐free attomolar detection of proteins is reported. Electrically addressable silicon nanowire field‐effect transistors and electrodes for electrokinetic transport are integrated onto a common sensor chip platform, and the nanowire devices are subsequently functionalized with receptors for selective biomarker detection. Nanowire devices modified with monoclonal antibody for prostate specific antigen exhibit close to a 10 4 increase in sensitivity due to streaming dielectrophoresis and corresponding electrostatic contribution to the binding affinity after application of an AC electric field. The devices are also modified with receptors for cholera toxin subunit B and achieve a similar enhancement. These results show general applicability of this method, and could open up opportunities in early stage disease detection and the analysis of proteins from single cells.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here