Premium
Modulation of DNA Polymerases with Gold Nanoparticles and their Applications in Hot‐Start PCR
Author(s) -
Mi Lijuan,
Wen Yanqin,
Pan Dun,
Wang Yanhong,
Fan Chunhai,
Hu Jun
Publication year - 2009
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.200901147
Subject(s) - polymerase , colloidal gold , polymerase chain reaction , dna polymerase , multiple displacement amplification , microbiology and biotechnology , dna , chemistry , biophysics , nanoparticle , nanotechnology , materials science , biology , biochemistry , gene , dna extraction
A new gold‐nanoparticle (AuNP)‐based strategy to dynamically modulate the activity of DNA polymerases and realize a hot‐start (HS)‐like effect in the polymerase chain reaction (PCR) is reported, which effectively prevents unwanted nonspecific amplification and improves the performance of PCRs. A high‐fidelity Pfu DNA polymerase is employed as the model system. Interestingly, AuNPs inactivate the polymerase activity of Pfu at low temperature, thus resembling an antibody‐based HS PCR. This inhibition effect of AuNPs is demonstrated for the preamplification polymerization activity of the PCR, which largely suppresses nonspecific amplification at temperatures between 30 and 60 °C and leads to highly specific and sensitive PCR amplification with Pfu. Significantly, the fidelity of Pfu is not sacrificed in the presence of AuNPs. Therefore, this AuNP‐based HS strategy provides a straightforward and potentially versatile approach to realize high‐performance PCR amplification.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom