z-logo
Premium
Tuning Array Morphology for High‐Strength Carbon‐Nanotube Fibers
Author(s) -
Zheng Lianxi,
Sun Gengzhi,
Zhan Zhaoyao
Publication year - 2010
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.200900954
Subject(s) - nanotube , materials science , carbon nanotube , morphology (biology) , chemical vapor deposition , fiber , hydrogen , nanotechnology , composite material , ultimate tensile strength , oxygen , chemical engineering , chemistry , organic chemistry , genetics , engineering , biology
Abstract Vertically aligned carbon‐nanotube arrays are synthesized by chemical vapor deposition. Carbon‐nanotube fibers are directly spun from the obtained nanotube arrays and then tested mechanically. A strong correlation between the array morphologies and the mechanical properties of the fibers is observed: well‐aligned arrays yield fibers with much higher performance, while wavy and entangled arrays give poor fiber properties. More importantly, such array morphologies could be controlled by introducing hydrogen or oxygen during the nanotube synthesis. By simply switching the growth condition from 150 ppm oxygen addition to 2% hydrogen addition, the nanotube array changes from the wavy morphology to the well‐aligned morphology, and correspondingly the tensile strength of the resultant fibers could be increased by 4.5 times, from 0.29 GPa for the fibers spun from the oxygen‐assistance‐grown nanotube arrays to 1.3 GPa for the fibers spun from the hydrogen‐assistance‐grown nanotube arrays. The detailed effects of hydrogen and oxygen on the nanotube growth, especially on the growth rate and the array spinnability, are extensively studied. The formation mechanism of the different morphologies of the nanotube arrays and the failure mechanism of the nanotube fibers are also discussed in detail.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here