Premium
Contactless Electrofunctionalization of a Single Pore
Author(s) -
Bouchet Aurélie,
Descamps Emeline,
Mailley Pascal,
Livache Thierry,
Chatelain François,
Haguet Vincent
Publication year - 2009
Publication title -
small
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.785
H-Index - 236
eISSN - 1613-6829
pISSN - 1613-6810
DOI - 10.1002/smll.200900482
Subject(s) - materials science , nanotechnology , membrane , polymer , surface modification , biosensor , porosity , electrode , deposition (geology) , chemical engineering , chemistry , composite material , paleontology , biochemistry , sediment , engineering , biology
Customized pores are smart components that find challenging applications in a variety of fields including purification membranes and biosensing systems. The incorporation of recognition probes within pores is therefore a challenge, due to the technical difficulty of delimiting the area functionalized and obtaining the localized, specific chemical modification of pore walls. An innovative approach, named contactless electrofunctionalization (CLEF), is presented to overcome this problem. CLEF allows easy, one‐step modification of the inner surface of a pore etched in a dielectric membrane. The pore wall is coated under the influence of an electric field created by the application of a voltage between two electrodes, located near but not in contact with the pore openings. This specific localization of the deposited material within the pore is extremely rapid. Coatings were reliably and reproducibly obtained using polypyrrole co‐polymers bearing oligonucleotides, demonstrating that this technology has a promising future in the design of biosensors. Moreover, the versatility of this process allows the deposition of various electroactive entities such as iridium oxide and therefore indicates a strong potential for diverse applications involving porous materials.